沙巴体育|沙巴app,官网,官方网站,官方网址


中科院数学与系统科学研究院

数学研究所

 

代数几何研讨班

 

报告人:       博士(美国Utah大学)

 Bernstein-Sato polynomials and topology

  2019.05.21(星期二),09:30-10:30

  点:数学院南楼N913

 要:Riemann-Hilbert correspondence for nearby cycles implies that roots of the Bernstein-Sato polynomials (or b-functions)  are related to eigenspaces of local monodromies. In general, Budur's conjecture predicts that the exponential of the zero locus of Bernstein-Sato ideals is the topological jumping loci of rank one local systems. In this talk, I will explain this beautiful phenomenon in detail and give a proof of (one of) Budur’s conjecture(s). This work is joint with Nero Budur, Robin Veer and Peng Zhou.

附件
相关文档

Sitemap

真人娱乐在线| 365体育官网| 百家乐娱乐|